
Research statement
Artificial intelligence (AI) has undergone a paradigm shift over the past years. From training separate models on images
or text scraped off the internet, the AI community has started building multimodal models that can combine information
from multiple sensory streams, like vision, audio and text. Despite this impressive progress, today’s multimodal
models are typically limited to learning cues that are directly observable within the relatively narrow field of perception
of the sensors and are unable to reason about the larger and often partially observable rich 3D scene in which the
streams are captured. Another limitation of these models is that they are designed to learn primarily semantic concepts
(e.g., associating the image of a cat with the “meow” sound), but not the spatial relations between the modalities and
the underlying scene where the capture takes place (e.g., the sound of a running tap can indicate where it is coming
from). Additionally, these models are trained with internet-style data, which is usually captured from carefully-chosen
locations. Consequently, they often struggle with reasoning about the information asymmetry across different capture
locations vis-a-vis understanding 3D scenes and the dynamic activity therein, and predicting the more suitable locations
for such capture (e.g., not all camera angles are equally useful for observing a human in a cluttered kitchen).

My research aims to address these limitations and build models that leverage the synergy of vision and other modalities
like audio and text to better understand a persistent 3D scene and the dynamic activity happening in the scene, often
beyond what is directly captured in the sensors’ “field of view". Such models have important applications in robotics
(e.g., a scene-aware robot can better navigate a 3D space) and AR/VR (e.g., showing an activity from an optimal camera
angle can provide a rich viewing experience to a human user).

In my research, I have developed methods that share two broad themes: 1) multi-modal modeling of a persistent 3D
scene and its properties in a resource-efficient manner, and 2) smart sensor placement for high-quality understanding a
dynamic activity in a 3D environment. In the following, I summarize these methods and my future research plans.

Learning to move to hear better (ICCV ’21; ECCV ’22). Physical factors can either restrict or facilitate our ability
to perceive relevant audio-visual events in our daily lives. E.g., a father working upstairs might move near the door to
better hear his child calling out from below; a traveler may shift a few places at a busy airport to hear an announcement.
These examples show how controlled sensor movements can be critical for audio-visual understanding. In terms of
audio sensing, a person’s nearness and orientation relative to a sound source affects the clarity with which it is heard,
especially when there are other competing sounds in the scene. In terms of visual sensing, one must see obstacles to
circumvent them, spot desired and distracting sound sources, use visual context to hypothesize an out-of-view sound
source’s location, and actively look for “sweet spots” in the visible 3D scene that may permit better listening. We are the
first to explore how autonomous multi-modal systems might learn to exhibit such intelligent behaviors (ICCV ’21 [7];
ECCV ’22 [9]). Unlike the traditional setup of separating sounds in a passive pre-recorded video [13], we introduce the
task of active audio-visual source separation: given a stream of egocentric audio-visual observations from a novel 3D
scene, an embodied agent must decide how to move within bounded time in order to recover the sounds being emitted
by some target object. See Fig. 1a. Towards that end, we propose a reinforcement learning framework comprising 1) a
policy that temporally aggregates spatial audio-visual observations, to decide where to move, and 2) an audio separator
that predicts an estimate of the target audio and refines it over time for better audibility. Please see our example videos1.

Few-shot estimation of scene acoustics (NeurIPS ’22, IROS ’24 Oral). We now shift our focus from the object-
centric scene understanding task of active sound separation to the environment-centric task of modeling how the physical
space in a 3D scene affects how an audio played in it actually sounds. The auditory experience can change drastically
from one environment to another—listening to a symphony in a big theater would feel different from listening to it in a
cozy bedroom. Conditioned on the scene geometry and materials, and the location of the source relative to the listener,
sound undergoes various acoustic phenomena in a 3D scene: direct sound, early reflections, and late reverberations,
These factors together comprise the room impulse response (RIR)—the transfer function that is commonly used for
modeling scene acoustics. Learning to model RIRs can be useful for generating a rich and realistic experience in
AR/VR applications and robotics by helping build acoustics-aware audio-visual embodied agents that can better interact
with their surrounding world. Stepping away from the tradition of measuring acoustics by densely collecting RIR
samples from a previously unseen scene [1], we learn a model that infers RIRs by only using few-shot audio-visual
observations from the scene (NeurIPS ’22 [8]). See Fig. 1b. We also show how using a learned RL policy to smartly
decide when and where to sample these sparse observations using a learned RL policy can further improve the acoustic
prediction performance (IROS ’24 [16]). Please see our project videos for sample predictions2.

Efficient scene mapping from multi-ego conversations (CVPR ’23). Whereas scene acoustics is crucial for
revealing an environment’s auditory context, the spatial layout of the scene is fundamental to understanding its physical
context. By representing the walls, furniture, and other major structures in a space, scene maps ground activity and
objects in a persistent frame of reference. This can facilitate high-level reasoning for many downstream applications in
AR (e.g., floorplan estimation, finding objects in a video walkthrough of a scene a.k.a episodic memory) and robotics

1https://vision.cs.utexas.edu/projects/active-av-dynamic-separation, https://vision.cs.utexas.edu/projects/move2hear/
2https://vision.cs.utexas.edu/projects/fs_rir, https://vision.cs.utexas.edu/projects/active_rir/
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Figure 1a. LangView [12]: use view-agnostic captions in
multi-view videos to gauge view quality and use this measure

train a view selector without any manual labels.

Figure 1b. SWITCH-A-VIEW [11]: given unlabeled
in-the-wild varying-view videos, pretrain a view-switch

detector and finetune it with limited labels for view selection

(e.g., indoor navigation of mobile robots). The status quo in topdown mapping is to either do a dense visual scan of the
scene [14] or use sounds (e.g., broad-range frequency sweep) [15], which are often intrusive in nature when emitted
around humans, coupled with a continuous camera stream, making the process energy-intensive and time-consuming.
We introduce a new scene mapping task aimed at mitigating these challenges (CVPR ’23 [10]). In our proposed setting,
multiple people converse as they move casually through the scene while wearing AR glasses equipped with an egocentric
camera, microphones, and potentially other sensors (e.g., for odometry). Given their egocentric audio-visual data
streams, the goal is to infer the ground-plane occupancy map for the larger environment around them, while satisfying a
pre-specified visual budget. To realize this vision, we propose a novel framework comprising 1) an audio-visual mapper
that predicts a shared map for the egos, and 2) a visual sampling policy that samples visual frames only when they are
deemed absolutely necessary for mapping. Please watch our project video for qualitative examples3.

Learning to select camera viewpoints in instructional videos (CVPR ’25 Highlight, ICCV ’25). Not all camera
viewpoints (views) are created equal when it comes to observing an intricate activity in a geometrically complex 3D
scene. That is, our ability to observe such activities depends on the chosen view. Solving this problem of camera
view selection is especially important for making instructional (a.k.a “how-to") videos, where the goal is to produce a
varying-view video from a multi-camera capture, such that each and every video segment is shown from an informative
viewpoint. For example, in a typical high-quality how-to video, a close-up view of the hands is desirable when a knitter
shows how to add stitches of yarn to a needle, or when a rock-climber demonstrates a particular hold—whereas a view
from afar may be preferable when the knitter shows the knitted sweater being worn, or the climber shows their selected
path up the wall. Unfortunately, today’s view selectors are primarily designed to provide a high-level understanding of
the video scene and optimize for viewing pleasure [6, 17, 2]. Besides, existing work is limited by relying on hand-coded
heuristics [3, 4] or assuming access to manual labels indicating the favored views for training [5, 6, 18]. Such labels are
expensive and quite special purpose. In our research, we address these limitations and design view selectors specifically
for instructional videos (CVPR ’25 [12], ICCV ’25 [11]). Importantly, our methods can learn to choose informative
views without access to large-scale manual best view labels. To this end, we turn to two alternate sources of weak
supervision during training: 1) viewpoint-agnostic natural language captions of multi-view instructional videos, for
indicating which view better captures the important details of the activity, as mentioned in the caption [12], and 2)
auto-detected viewpoint switches in edited in-the-wild how-to videos, for revealing human view preferences when
filming instructional videos [11]. Please see our project videos4 for our models’ view selection examples.

Conclusion and future work. My research so far has shown how we can build multi-modal methods that can reason
about a 3D scene and the dynamic activity therein, and solve both scene-centric (estimation of environment acoustics
and topdown maps) and activity-centric (audio source separation and camera view selection in instructional videos)
tasks. My ultimate goal is to design unified but efficient models that can be not only be used to tackle multiple such
tasks at once, but can also be deployed on edge computing devices with compromising on performance. Towards this
goal, I am excited to see my research evolve in two broad directions in the future.

First, I want my future research to go hand-in-hand with the development of state-of-the-art edge computing hardware.
Specifically, I plan to benchmark my methods on wearables like Meta’s Aria glasses and Apple VisionPro, and continue
to work on enhancing them while also meeting the compute and energy requirements of such devices. I believe that
such efforts can also contribute to improvements in wearable hardware design, thereby creating a tight feedback loop
between the field of building energy-efficient AI tools and that of designing edge computing devices.

Second, my approach so far has involved designing individual methods that tackle different scene and activity under-
standing tasks separately. However, many of these methods inherently rely on learning similar features (e.g., active
audio separation and camera view selection require precise understanding of scene occlusions; audio-visual scene
mapping and acoustics estimation require high-level reasoning about scene layout and materials), and consequently, can

3https://vision.cs.utexas.edu/projects/chat2map
4https://vision.cs.utexas.edu/projects/which-view-shows-it-best/, https://vision.cs.utexas.edu/projects/switch_a_view/
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potentially benefit from shared representations. I plan to explore this avenue in future work and design models that
learn shared features through multi-task learning or self-supervision, which can be used for solving multiple such tasks.
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